
SAE AADL V2: An Overview

An Overview of AADL V2

Outline

• Why AADL

• AADL Language Overview

• Modeling Embedded Software

• Modeling Computer Systems

• Properties & Patterns

2

• Large Scale Systems

• Summary

An Overview of AADL V2

Cost & Time Reduction due to Early Fault
Discovery

System

Design
System

Test

Acceptance

Test

Requirements

Engineering

110x20.5%

2.5x 50.5%

9% 40x

70% 3.5%

Operation

10%

© 2010 Carnegie Mellon University 3

Software

Architectural

Design

Component

Software

Design

Code

Development

Unit

Test

Integration

Sources:
NIST Planning report 02-3, The Economic Impacts of Inadequate

Infrastructure for Software Testing, May 2002.
D. Galin, Software Quality Assurance: From Theory to

Implementation, Pearson/Addison-Wesley (2004)
B.W. Boehm, Software Engineering Economics, Prentice Hall (1981)

2.5x

6%

50.5%

16x

6.5x

10x

10% 20% Where faults are introduced

Where faults are found

The estimated nominal cost for fault removal

An Overview of AADL V2

Mismatched Assumptions

System Engineer Control Engineer
A

p
p

lic
a

tio
n

 D
e

v
e

lo
p

e
r

S
y
s

te
m

 U
s

e
r

System
Under
Control

Control
System

Physical Plant
Characteristics
Lag, proximity

Data Stream
Characteristics

ETE Latency (F16)
State delta (NASA)

Measurement Units
Ariane 4/5
Air Canada

Operator Error

© 2010 Carnegie Mellon University 4

A
p

p
lic

a
tio

n
 D

e
v
e

lo
p

e
r

Compute
Platform

Runtime
Architecture

Application
Software

Embedded SW System Engineer

State delta (NASA)

Concurrency
Communication

ITunes crashes on dual-cores

Distribution & Redundancy
Virtualization of HW

(ARPA-Net split)

Why do system level failures still occur despite fault
tolerance techniques being deployed in systems?

SysML does not address Embedded Software System Architecture Issues

Lag, proximity

Hardware

Engineer

An Overview of AADL V2

What is the AADL?

SAE International Architecture Analysis and Design Language (AADL) is
a standard* architecture modeling language, developed by and for the
avionics, aerospace, automotive, and robotics communities.

Uses component-based notation for the specification of task and
communication architectures of real-time, embedded, fault-tolerant,
secure, safety-critical, software-intensive systems.

The language & associated tools are used to model, analyze, and

© 2010 Carnegie Mellon University 5

The language & associated tools are used to model, analyze, and
generate embedded real-time systems

• Tool-based analysis in Eclipse framework

• A modeling infrastructure that supports model-based engineering concepts

• Based on 15 Years of DARPA funded research technologies

• First published Nov 2004 (V1) - revised standard Jan 2009 (V2)

* SAE International standard document AS 5506A (R)

An Overview of AADL V2

Model-Based Embedded System Engineering

Document the
Runtime

Architecture

Abstract, but

Navigation
System

Airbag
DeploymentParking

Assistance

Emission
Management

Cruise
Control

Antilock
Braking
System

Electronic
Fuel

Injection

System Analysis

• Schedulability

• Performance

• Reliability

• Fault Tolerance

© 2010 Carnegie Mellon University 6

Execution

Platform

.

Abstract, but
Precise

Application

Software

• Fault Tolerance

• Dynamic Configurability

System Construction

• AADL Runtime System

• Application Software
Integration

External

Environment

An Overview of AADL V2

Application SW Runtime
Architecture SW packages

running as communicating
tasks

Physical
system/environment

Interface with

embedded SW/HW

Logical interface
between software

and physical system

Embedded Software System Architecture

© 2010 Carnegie Mellon University 7
7

Computer platform
architecture

Processors & networks
& runtime systems

An Overview of AADL V2

Cooperative Engineering of Systems

Application Software Application Software
Runtime Architecture
(task & communication)

Physical System
Architecture

(interface with embedded
SW/HW)

Application Software

SysMLSysMLAADLAADL

Operational
Environment

(People, Use
scenarios)

Embedded System Engineering System Engineering

© 2010 Carnegie Mellon University 8

Key elements of physical system
are captured in AADL as

component abstractions &
properties relevant to embedded

software system analysis

Computer Platform Computer Platform
Architecture
(processors &

networks)

Hardware
Components

(circuits &
logic)

VHDLVHDL

Application Software
Components
(source code)

Java, UML, Java, UML, SimulinkSimulink

Physical

ModelicaModelica

Physical
Components

(mechanical , electrical,
heat)

ModelicaModelica

scenarios)

UMLUML
Control

Engineering

Mechanical
Engineering

Electrical

Engineering

Application

Software

Engineering

An Overview of AADL V2

Architecture-Centric Modeling Approach

Security
•Intrusion

•Integrity

•Confidentiality

Availability
& Reliability

•MTBF

•FMEA

•Hazard
analysis

Architecture Model

Single Annotated Architecture Model

© 2010 Carnegie Mellon University 9

Reduced model
validation cost due to
single source model

Real-time
Performance
•Execution time/
Deadline

•Deadlock/starvation

•Latency

Resource
Consumption
•Bandwidth

•CPU time

•Power
consumption

•Data precision/
accuracy

•Temporal
correctness

•Confidence

Data
Quality

Auto-generated
analytical models

An Overview of AADL V2

Architecture Meta Model

AADL Semantic Model
Meta model & semantic spec

Error Occurrence &
Propagation Behavior

Error Model Annex

Textual
AADL

Graphical
AADL

Static SW Architecture

Packages, data, subprograms,

UML Profile
via MARTE

Semantically Consistent Architecture & Analysis
Concepts

Safety
Analysis

Reliability
Analysis

Performance
Analysis

p
ro

p
a

g
a

ti
o

n
 o

f

C
h

a
n

g
e

s
 t

h
ro

u
g

h
 r

e
g

e
n

e
ra

ti
o

n

© 2010 Carnegie Mellon University 10

Component &
Interaction Behavior

Behavior Annex

Database
Schema &

Form-based
Frontend

Packages, data, subprograms,
abstract components

Runtime Architecture

Processes, threads,
connections

Modal runtime configurations

Import via
XML/XMI

interchange
format

Computer System & Platform

Processor, memory, bus, device

system components

Analysis

Resource
Analysis

Data Quality
Analysis

A
u

to
-p

ro
p

a
g

a
ti

o
n

 o
f

C
h

a
n

g
e

s
 t

h
ro

u
g

h
 r

e
g

e
n

e
ra

ti
o

n

AADL Offers
•Domain concepts with strong

semantics
•XMI-based interchange format

•Extensible domain model

An Overview of AADL V2

System

Design

System

Test

Acceptance

Test

Top-Level

Verification Items

High-level

AADL Model

Low fidelity

Adequate

confidence

High fidelity

Strong confidence

Requirements

Engineering

Virtual System Integration

Benefits of System Architecture Virtual Integration

© 2010 Carnegie Mellon University 11

Software

Architectural

Design

Component

Software

Design

Code

Development

Unit

Test

Integration

Test

Detailed

AADL Model

Specify Model-
Code Interfaces

→ generation of test cases

← updating models with actual data

An Overview of AADL V2

What is the AADL (SAE AS-5506A Std)?

A formal modeling language for describing software and hardware
system architecture

Based on the component-connector paradigm

Key Elements:

• Core AADL language standard (V2-Jan,2009, V1-Nov 2004)

– Textual & graphical, precise semantics, extensile

• AADL Meta model & XMI/XML standard

© 2010 Carnegie Mellon University 12

• AADL Meta model & XMI/XML standard

– Model interchange & tool interoperability

• Annexes Error Model Annex as standardized extension

– Error Model Annex addresses fault/reliability modeling, hazard analysis

• UML 2.0 profile for AADL

– Transition path for UML practitioner community via MARTE

An Overview of AADL V2

AADL Working Group Annex Activities

Behavior Annex as AADL extension (in ballot)

• Concurrency behavior

• Validation of implementation

ARNIC 653 Annex (in ballot)

• Capture 653 architecture in standard way

• Define 653 architectural elements in AADL for analysis

• Enable generation to 653 O/S

© 2010 Carnegie Mellon University 13

• Enable generation to 653 O/S

Data Modeling Annex (in ballot)

Code Generation Annex (in review)

Error Model Annex (revision)

An Overview of AADL V2

Outline

• Why AADL

• AADL Language Overview

• Modeling Embedded Software

• Modeling Computer Systems

• Properties & Patterns

© 2010 Carnegie Mellon University 14

• Large Scale Systems

• Summary

An Overview of AADL V2

AADL: The Language

Precise execution semantics for components

• Thread, process, data, subprogram, system, processor, memory, bus, device,
virtual processor, virtual bus

Continuous control & event response processing

• Data and event flow, synchronous call/return, shared access

• End-to-End flow specifications

Version 2

© 2010 Carnegie Mellon University 15

Operational modes & fault tolerant configurations

• Modes & mode transition

Modeling of large-scale systems

• Component variants, layered system modeling, packaging, abstract, prototype,
parameterized templates, arrays of components and connection patterns

Accommodation of diverse analysis needs

• Extension mechanism, standardized extensions

An Overview of AADL V2

AADL Representation Forms

thread data_processing
features
raw_speed_in: in data port;
speed_out: out data port;

properties
Period => 20 ms;

end data_processing;

Graphical

data_processing

AADL Text

20 ms

© 2010 Carnegie Mellon University 16

XML
<ownedThreadType name="data_processing">

<ownedDataPort name="raw_speed_in"/>

<ownedDataPort name="speed_out" direction="out"/>

<ownedPropertyAssociation property="Period"

<ownedValue xsi:type="aadl2:IntegerLiteral"

value="20" unit="ms"

</ownedValue>

</ownedPropertyAssociation>

</ownedThreadType>

An Overview of AADL V2

AADL Language Elements

AADL

core modeling

Abstractions

Components

Interactions

Properties

© 2010 Carnegie Mellon University 17

AADL

Language

Elements

engineering

support

infrastructure

Abstractions

Organization

Extensions

An Overview of AADL V2

Component-Based Representation

Specifies a well-formed interface

Component type allow for multiple implementations with extensions

All external interaction points defined as features

Data and event flows through component, across multiple components

Properties to specify component characteristics

Components organized into system hierarchy

© 2010 Carnegie Mellon University 18

Component interaction declarations must follow system hierarchy

An Overview of AADL V2

Some System Properties

AADL standard properties for systems include the following

System startup

• Startup_Deadline => 0.5s

Time to load programs, data into the system at startup

System

A property of type Time assigned (=>) a

value of 0.5 seconds.
Value is a floating point number with a
time unit.
Valid units are ps, ns, ms, s, h, m, d, etc.

© 2010 Carnegie Mellon University 19

• Load_Time => 0.1s..0.15s

• Load_Deadline => 0.2s

Two values indicating a time interval:
Loading takes between 0.1 and 0.15
seconds.

An Overview of AADL V2

Sample System Type

Throughout this module we create a model of a part of an automotive
system to describe data flow and analyze correctness of data types
We start with a top-level system type for the car system

Textual AADL

package carPackage

public

System

All AADL classifiers are
organized in packages

© 2010 Carnegie Mellon University 20

public
system CarSystem
end CarSystem;

end carPackage;

Graphical AADL

Note: Each declaration must be contained in a package

CarSystem

organized in packages

Declarations end with a
semi-colon

An Overview of AADL V2

Sample System Implementation

We now add a subsystem that handles braking

package carPackage

public
system CarSystem
end CarSystem;

system BrakingSystem
end BrakingSystem;

system implementation CarSystem.impl
subcomponents

Component
implementation name
contains type name

© 2010 Carnegie Mellon University 21

subcomponents
braking: system BrakingSystem;

end CarSystem.impl;

end carPackage; CarSystem

CarSystem.impl

braking:
BrakingSystem

Narrow line for
type, wide line for
implementation

Subcomponents
drawn inside
implementation

An Overview of AADL V2

AADL: Components and Connections

Component type
• component category
• extends
• features (is)
• subcomponents (requires)

Component type
identifier

• component category
• prototype
• extends {component_type}
• features
• flow specification
• properties

Package

features
• port
• port group
• parameter
• access
• subprogram

implements
type

is one of

Properties

application

platform

composite

Component Category
• data
• subprogram
• thread
• thread group
• process
• memory
• device
• (virtual) processor
• (virtual) bus
• system
• abstract

© 2010 Carnegie Mellon University 22

22

Package
public
component classifier

private
component classifier

more details

Component implementation
identifier

• extends {component implementation}

• refines type

• subcomponents
• connections

• call sequences

• modes

• flow implementation & end-to-end flows

• properties

Connections
• data
• event
• event data
• port group
• access

Properties
• standard
• user defined

Property set
property types
property definitions
property values

modes
mode transitions
mode configurations

referenceVersion 2

An Overview of AADL V2

Outline

• Why AADL

• AADL Language Overview

• Modeling Embedded Software

• Modeling Computer Systems

• Properties & Patterns

© 2010 Carnegie Mellon University 23

• Large Scale Systems

• Summary

An Overview of AADL V2

Application Software Components

System – hierarchical organization of components

Process – protected address space

Thread group – logical organization of threads

Process

Thread group

System

© 2010 Carnegie Mellon University 24

Thread – a schedulable unit of concurrent execution

Data – potentially sharable data

Subprogram – callable unit of sequential code

Thread

Data

Subprogram

An Overview of AADL V2

Process Components

A process component represents a protected virtual address space

• Address space boundaries are by default enforced at run-time

• A property setting allows to disable the protection

Contains executable program and data needed for execution and must
be loaded into memory

• Process is stored in ROM

Process

© 2010 Carnegie Mellon University 25

• Process is stored in ROM

• Process is loaded at system startup

• Process may be unloaded when it is not active

A process must contain at least one thread subcomponent to be
executable

Note: An AADL process does not have an implicit thread

An Overview of AADL V2

Sample Process Properties

Process at run-time

• Runtime_Protection => false;

• Load_Time => 150ms..300ms;

• Load_Deadline => 500ms;

• Startup_Execution_Time

No run-time enforcement of address
space protection

Time to load binary image into
memory

Time to start the process after loading,

Process

© 2010 Carnegie Mellon University 26

• Startup_Execution_Time
=> 100ms..110ms

• Startup_Deadline => 200ms;

Relationship to implementation in a programming language

• Source_Language => “C”;

• Source_Text => “navigation.c”;

Time to start the process after loading,
e.g., to create contained threads

An Overview of AADL V2

Thread Components

A thread component represents a schedulable and executable entity in a
system

• Concurrent tasks

• Active objects

Threads execute based on time or thread-external events

• Periodically every 50ms, e.g., a data sampling thread in a control system

• Process a message upon arrival with arbitrary arrival pattern, e.g., a thread in

Thread

© 2010 Carnegie Mellon University 27

• Process a message upon arrival with arbitrary arrival pattern, e.g., a thread in
a camera processing image data when the shutter button is pressed

Threads are mapped onto operating system threads for execution

• One or more application threads per OS thread

Interacts with other threads through port connections, subprogram calls,
and shared data access

Executes within the virtual address space of its enclosing process

An Overview of AADL V2

Thread Dispatch Protocols

Periodic thread

• Periodic dispatch of threads, typically with hard deadlines

Aperiodic thread

• Dispatch based on events with arbitrary arrival patterns

Sporadic thread

• Dispatch based on events with a minimal time between dispatches

Background thread

50ms

B

S:10ms

Thread

50ms

A

© 2010 Carnegie Mellon University 28

Background thread

• Dispatch once and execute until completion

Timed thread

• Dispatch based on events, or based on timeout if no events occur

Hybrid

• Dispatch based on events and periodically (combines periodic and aperiodic
dispatch protocols)

B

T:10ms

H:10ms

An Overview of AADL V2

Properties related to thread dispatch

• Dispatch_Protocol => perodic;

• Period => 50ms;

Properties needed for thread scheduling

• Compute_Execution_Time => 45ms..50ms;

Thread Properties
Thread

5ms

One from previous slide
(or user-defined)

Required for periodic, sporadic, timed, and
hybrid threads

© 2010 Carnegie Mellon University 29

• Compute_Execution_Time => 45ms..50ms;

• Deadline => 40ms;

• Dispatch_Offset => 5ms; For periodic threads: indicate
delayed dispatch relative to
other periodic threads

Optional, defaults to period

The execution time range of this
thread – upper bound is worst
case execution time

An Overview of AADL V2

Thread Example

A thread executes periodically to filter navigation data, e.g., from a GPS
device

thread NavDataFilter
features
rawData: in data port navData.raw;
filteredData: out data port navData.filtered;

properties
Dispatch_Protocol => periodic;
Period => 50ms;

Execute once every 50ms

© 2010 Carnegie Mellon University 30

Period => 50ms;

Deadline => Period;
Compute_Execution_Time => 18..20 ms;

end NavDataFilter;

Deadline and execution time
needed by a scheduler

An Overview of AADL V2

Thread States

Initialize

FinalizeActivate Deactivate

Inactive

STOP

© 2010 Carnegie Mellon University 31

Compute

Recover

Awaiting
Dispatch

Substates
o Executing normally
o Blocked
o Preempted
o Suspended

State with associated code execution

State without code execution

An Overview of AADL V2

Thread Fault Handling

Thread errors are classified as recoverable or unrecoverable

• Recoverable error (e.g., deadline overrun during computation)
� Runtime system invokes recovery entry point

• Unrecoverable error (e.g., any error during recovery)
� Thread is aborted

© 2010 Carnegie Mellon University 32

� Thread is aborted

Errors are reported via the thread's error port and can be processed like
any other event / message, for example by a fault monitoring component

An Overview of AADL V2

Ports and Connections

Ports – interaction points of a component to
model directional transfer of data and control.
Ports are declared as features in component
types.

• Data port: non-queued data

• Event port: queued signals

Data port

out

in

in out

Event port

© 2010 Carnegie Mellon University 33

• Event port: queued signals

• Event data port: queued messages

Feature group – aggregation of ports (and
other features) into single connection point

Connections – connect ports in the direction
of data/control flow; uni- or bi-directional

Event port

Event data port

Feature group

An Overview of AADL V2

Some Port Properties

Queuing of events and messages

• Required_Connection => true;

• Queue_Size => 3;

• Queue_Processing_Protocol => FIFO;

• Overflow_Handling_Protocol => DropOldest;

• Dequeue_Protocol => AllItems;

• Urgency => 255;

Default: no connection needed

Handling of incoming event
and message queues

To resolve conflicts if several
queues are not empty

© 2010 Carnegie Mellon University 34

• Urgency => 255;

Frequency of data input and output

• Input_Rate => (
Value_Range => 1.0 .. 1.0;
Rate_Unit => PerDispatch;
Rate_Distribution => Fixed;)

• Output_Rate

Mapping to variable in an implementation

• Source_Name => "brake_state";

queues are not empty

An Overview of AADL V2

Port Connections

Source Feature Destination Feature Conversion

Data port Data port -

Event data port Data port Discard the event

Data port Event port Arrival of data triggers event, data is discarded

Event port Event port -

Event data port Event port Discard the data

Event data port Event data port -

© 2010 Carnegie Mellon University 35

Example:

• In a control loop, a data port D of a data producer is connected to the data port
of a consumer – D is also connected to a logging component’s event data port

• A thread sends messages out of an event data port ED to another thread – ED
is connected to a health monitor’s data port to periodically checks if there are
new messages sent by sampling the sending port

Event data port Event data port -

Data port Event data port Arrival of data triggers event, data becomes

message content

An Overview of AADL V2

Connections Between Ports 1

An AADL port connection connects

• Two ports of subcomponents in the same component implementation
� Communication inside a component – identical port directions

• A port of a component implementation with a port of one of its subcomponents
� Communication with the outside – complementary port directions

• A port can have multiple outgoing connections (fan-out)

• Data ports can have one, other ports can have multiple incoming connections

1

3

2

© 2010 Carnegie Mellon University 36

(fan-in)

• Connections can be bi-directional (<->)

1

3

2 2

Port connection
instance

An Overview of AADL V2

Port Timing

Input timing

• Data, events, and messages eventually processed by a thread, device, etc.

• Default behavior

• Contents of ports frozen at thread dispatch time

• Thread does not see new data/events before next dispatch

Output timing

© 2010 Carnegie Mellon University 37

Output timing

• Data, events, and messages are produced by a thread, device, etc.

• Default behavior

• Data available at completion time

• Events and messages anytime during execution

Default timing can be overridden by properties

An Overview of AADL V2

Feature Groups

Feature groups are collections of individual features* and nested feature
groups such that

• Feature group can be connected as a single unit outside a component

• Individual features can be connected inside a component

© 2010 Carnegie Mellon University 38

Bundling of connections
reduces graphical clutter

* In addition to ports, AADL has access features and parameters. A component can declare that it
provides access to a shared subcomponent or that it requires access to a subcomponent shared by
another component. Subprogram components can have parameters. A feature group can contain all
kinds of features.

An Overview of AADL V2

Data Components

Data components can represent

• Data shared between several threads or subprograms

• Local data in a thread or subprogram

• The type of data exchanged through data and event data ports

• The type of subprogram parameters

AADL models should contain information about data that is relevant to

data

© 2010 Carnegie Mellon University 39

AADL models should contain information about data that is relevant to
analyses of the architecture, e.g.,

• Bandwidth analysis – size of data elements, frequency of data exchanges

• Model consistency – size, value ranges, and physical units of exchanged data

Note:

• Use of data components is optional in an architecture

• May be needed for analyses or code generation

• AADL is not a complete data modeling language (� Data Modeling Annex)

An Overview of AADL V2

A data component can be shared among several other components

• Data access features – to model required or provided access to a shared data
component

• Access connections – to model access paths to the shared data component

Shared Data Access

Access connection
Provided data access Required data access

© 2010 Carnegie Mellon University 40

Note:

• The data access symbol points away from the shared component. Data flow is
indicated by the connection direction.

• Where possible use port connections to express intended data flow.

state

Semantic access
connection

Shared data User of shared data

An Overview of AADL V2

Data Consistency

Default consistency rules for port connections

• Data ports must have the same data type (if specified at both ends)

• Data implementations must be identical (if specified at both ends)

• Data implementation at the source end must implement the data type at the
destination end

Configurable via connection property Classifier_Matching_Rule

© 2010 Carnegie Mellon University 41

Configurable via connection property Classifier_Matching_Rule

• Default value: Classifier_Match (as above)

• Other values: Equivalence, Subset, Conversion
Make use of other properties that allow the architect to specify for pairs of data
classifiers that

• Both are identical

• One is a subset of the other

• One is automatically converted into the other via the connection protocol

An Overview of AADL V2

Flows

Logical flow of data and/or control through a sequence of components
and connections.

Support analysis of data flow and control flow

Provide the capability of specifying end-to-end flows to support analysis
such as

• End-to-end timing and latency

• Fault propagation

© 2010 Carnegie Mellon University 42

• Fault propagation

• Resource management based on operational flows

• Security based on information flows

• …

An Overview of AADL V2

device BrakePedal

features

brake_event: out event data port;

flows

FSrc1: flow source brake_event;

end BrakePedal;

system CruiseControl

features

Partial Specification

Flow Sources, Paths, Sinks

CruiseControl

Brake
Pedal

© 2010 Carnegie Mellon University 43

features

brake_event: in event data port;

throttle_setting: out data port;

flows

brake_flow: flow path brake_event -> throttle_setting;

end CruiseControl;

device ThrottleActuator

features

throttle_setting: in data port float_type;

flows

FSnk1: flow sink throttle_setting;

end ThrottleActuator;

CruiseControl

Throttle
Actuator

An Overview of AADL V2

Flow Implementation

Flow through subcomponents and connections

Subcomponent flow in terms of its flow specification

brake_flow: flow path brake_event -> throttle_setting;

cruise_control

Flow Path
Specification

© 2010 Carnegie Mellon University 44

Flow Path
Implementation

control_lawsdata_in

C1
C5

C3

flow path F_di flow path F_clbrake_event
throttle_setting

connections

brake_flow: flow path brake_event ->

C1 -> data_in.F_di ->

C3 -> control_laws.F_cl ->

C5 -> throttle_setting;

An Overview of AADL V2

End To End Flow Example

Flow from the brake through the cruise control to the throttle actuator

system CarSystem.impl
subcomponents
...

flows
SenseControlActuate: end to end flow

brake_pedal.FSrc1 -> C1 -> cruise_control.brake_flow ->

© 2010 Carnegie Mellon University 45

brake_pedal.FSrc1 -> C1 -> cruise_control.brake_flow ->
C2 -> throttle_actuator.FSnk1;

end CarSystem.impl;

flow path brake_flow

C2C1

flow sink FSnk1flow source FSrc1

brake_
pedal

cruise_control throttle_
actuator

An Overview of AADL V2

Subprogram and Subprogram Group

A subprogram component represents executable code

• Is executed sequentially (concurrent execution expressed with threads)

• Can be called from a tread or another subprogram

• Can be called with parameters

• Does not maintain internal state across calls, but may access shared data

A subprogram group represents a library of subprograms

subprogram

subp. group

© 2010 Carnegie Mellon University 46

A subprogram group represents a library of subprograms

Subprograms and subprogram groups can be shared across components

Note:

• Use of subprograms is optional in an architecture

• May be needed for analyses or code generation

An Overview of AADL V2

A subprogram can be shared between components

• Subprogram access features – to model required or provided access to a
shared subprogram

• Access connections – to model the path to the shared subprogram

Subprogram Access

Access connection
Provided subprogram access Required subprogram access

© 2010 Carnegie Mellon University 47

Note:

• The access symbol points away from the shared subprogram

• Subprogram access connections are bidirectional

Semantic access
connection

subprogram

Ultimate Source Ultimate destination

An Overview of AADL V2

Subprogram Calls and Call Sequences

Calls can be to explicit or implicit subprogram instances

Calls to subprograms are organized in call sequences

Call sequences can occur in thread and subprogram implementations

A subprogram call executes the call sequence in the called subprogram
once

A thread can have call sequences for initialization, finalization, activation,
deactivation, computation, and recovery

© 2010 Carnegie Mellon University 48

deactivation, computation, and recovery

Each thread dispatch executes the computation call sequence once

Subprogram calls can be local or remote

• Local call – the subprogram executes in the context of the calling thread

• Remote call – the subprogram executes in the context of another thread

Note:

• Modeling of call sequences is optional

• Useful as an intermediate representation for code generation

• To model more complex control flows a language extension must be used
(� Behavior Annex)

An Overview of AADL V2

Modes and Mode Transitions

Modes represent system configurations

• Subcomponents can be active or inactive in a mode

• Connections can exist in certain modes only

• Property values can depend on the component's mode

Modes can represent software states in threads and subprograms

Mode transitions represent configuration changes as reaction to events

Mode

© 2010 Carnegie Mellon University 49

Mode transitions represent configuration changes as reaction to events

• Triggered through ports (from outside or from a subcomponent)

• Triggered internally by implementation software

• Triggered internally in an execution platform component or a device

Example: In an avionics system, different components are active during
different flight phases (takeoff, cruising, autopilot, landing)

Note: Modes are not intended for modeling detailed internal behavior of
threads or subprograms (� AADL Behavior Annex)

An Overview of AADL V2

A system that can be connected to a fault monitoring component

system DualRedundant
features (three event ports as below)
modes
nominal: initial mode;
backup: mode;
reinit: mode;
t1: nominal –[Primary_fail]-> backup;
t2: backup –[Init_restart]-> reinit;

Modal Components

Mode transition
name is optional

Mode after
system startup

Current mode

Mode

© 2010 Carnegie Mellon University 50

t2: backup –[Init_restart]-> reinit;
t3: reinit –[Primary_ok]-> nominal;

end DualRedundant;

nominal

backup

reinit

Primary_fail

Primary_ok

Init_restart

Initial mode

Current mode

Fault
Monitor

An Overview of AADL V2

Modes in the Component Hierarchy

Mode of a subcomponent can be derived from the mode of the containing
component

• Subcomponent modes are declared as required modes, they are provided by
the enclosing component

• Subcomponent may not contain mode transitions, subcomponent mode
changes are driven by mode changes in the containing component

• Modal subcomponent declaration specifies how container modes map to
subcomponent modes

© 2010 Carnegie Mellon University 51

subcomponent modes

• Mode of the container determines the subcomponent mode

With derived modes it is possible to specify synchronized mode
transitions throughout all components in a subsystem

An Overview of AADL V2

Derived Modes in Detail

system implementation S.impl
modes
A initial mode; B mode;
C mode; D mode; E mode;
… mode transitions here …

subcomponents
subsys: system S1 in modes (A => X, B => Y, C => Y, D);

end S.impl;

system S1

Subsys active in mode
A and its mode is X

Multiple modes can map
to the same derived mode

Name mapping optional
if names are identical

S1 (and implementations)
may not declare additional

© 2010 Carnegie Mellon University 52

system S1
requires modes
X mode; Y mode; D mode;

end S1;

If S.impl is in
mode …

… then subsys is in
derived mode …

A X

B Y

C Y

D D

E None, S1 not active

if names are identical
may not declare additional
modes or mode transitions

An Overview of AADL V2

System Operation Modes

A system typically consists of multiple components that have modes

• Multiple instances of the same modal component

• Instances of different modal components

The overall system state is described by the collection of current modes
of all modal components in the system – System Operation Mode (SOM)

The SOM changes whenever the mode of a component in the system

© 2010 Carnegie Mellon University 53

The SOM changes whenever the mode of a component in the system
changes

• A component receives an event that triggers a mode transition

• An internal mode of a thread or subprogram changes as a result of execution

If an event or message is sent out through a single port and triggers
multiple mode transitions, then this is treated as a single SOM transition

Similarly, transitions of derived modes and parent modes are treated as a
single SOM transition

An Overview of AADL V2

Mode Transitions and Thread Execution

Upon activation/deactivation the runtime system invokes the activation/
deactivation entry point of each thread that is activated or deactivated

Mode transition timing

• Mode transitions inside threads take place at the next thread dispatch, i.e., the
next execution is the thread is in the new mode

• Mode transitions in hardware components happen immediately

© 2010 Carnegie Mellon University 54

• Mode transitions in hardware components happen immediately

• Other mode transitions may change the set of active threads and can happen
in two ways

– Emergency mode transitions happen immediately, deactivated threads are
aborted if necessary

– Planned mode transitions allow critical threads finish execution and happen
when their periods align

– A mode transition is marked as an emergency transition via property
Mode_Transition_Response

– By default, mode transitions are planned

An Overview of AADL V2

Mode Transition and Thread Execution

Steps in a planned mode transition

1. Wait until periods of critical periodic threads and devices align

2. Disable connections that are not part of the new SOM

3. Read data that is flows via connections that are marked active during the
mode transition

4. Deactivate threads that are not pert of the new SOM – invoke their
deactivation entrypoints

© 2010 Carnegie Mellon University 55

5. Activate threads that are part of the new SOM – invoke their activation
entrypoints

6. Enable connections that are part of the new SOM

7. Wait until periods of critical threads align

8. Continue in the new SOM

Periodic threads and devices are marked as critical setting property
Synchronized_Component to true

An Overview of AADL V2

Outline: AADL Standard & MBE

• Why AADL

• AADL Language Overview

• Modeling Embedded Software

• Modeling Computer Systems

• Properties & Patterns

© 2010 Carnegie Mellon University 56

• Large Scale Systems

• Summary

An Overview of AADL V2

Execution Platform Components and Devices

Processor / Virtual Processor – Provides thread scheduling and
execution services

Memory – provides storage for data and source code

Processor

Memory

Virtual
Processor

© 2010 Carnegie Mellon University 57

Bus / Virtual Bus – provides physical/logical connectivity between
execution platform components

Device – interface to external environment

Device

Bus

Memory

Virtual Bus

An Overview of AADL V2

Two Aspects of Execution Platform
Components
Represent hardware components with corresponding characteristics

• Processor timing, hardware clock period/jitter

• Bus transmission time, latency

• Memory capacity, access time, RAM/ROM

• Constraints on physical connectivity

• Power consumption

• Weight

© 2010 Carnegie Mellon University 58

• Weight

Represent logical resources with corresponding characteristics

• Thread scheduling policy of a processor

• Communication protocol over a network connection modeled as a bus

• Transactional characteristics of a database modeled as a memory component

These two aspects are reflected in properties that are applied to the
components

AADL provides the virtual processor / bus component categories that
represent only the logical resource aspect of a processor / bus

An Overview of AADL V2

Processor

As a hardware component

• Processors are computer-hardware

– Include a CPU, memory, bus, etc

– Include a hardware clock that can interrupt the processor

– MIPS rating, size, weight

As a logical resource

• Processors schedule threads

Processor

© 2010 Carnegie Mellon University 59

• Processors schedule threads

– Implementation of one or more scheduling policies

– A periodic clock interrupt to drive periodic dispatching

• Processors execute software

– Software to provide scheduling and other runtime system functionality

Threads are bound to processors for execution

Processors may

• Access memory and device components via buses

• Execute software associated with devices

An Overview of AADL V2

Some Processor Properties

Logical Resource

Thread Scheduling Properties

• Scheduling_Protocol => RMS;

• Thread_Swap_Execution_Time => 1.0ms;

• Process_Swap_Execution_Time => 1.5ms;

• Thread_Limit => 16;

Cost of context switching

Rate-monotonic fixed priority
preemptive scheduling

Processor

© 2010 Carnegie Mellon University 60

• Thread_Limit => 16;

• Allowed_Dispatch_Protocol => (periodic, aperiodic);

• Source_Text => “Linux-rt.c”;

Hardware Component

Clock Properties

• Clock_Period => 10ms;

• Clock_Jitter => 2ms;

File containing the
runtime system

Time between two clock
interrupts

Difference between clock
interrupt handling start in
multiprocessor system

An Overview of AADL V2

Bus

As a hardware component

• A bus provides the physical connection between hardware components

– Inside a hardware component, e.g., PCI bus in a PC

– Between hardware components, e.g., a USB connection between a PC and
a camera

As a logical resource

• A bus represents the protocol(s) by which connected components
communicate

bus

© 2010 Carnegie Mellon University 61

• A bus represents the protocol(s) by which connected components
communicate

Components are connected to a bus with a bus access connection

A bus is shared by all components that access it

An Overview of AADL V2

Some Bus Properties

Logical Resource

Constraints on transported content

• Allowed_Connection_Type =>
(Port_Connection, Data_Access_Connection);

• Allowed_Message_Size => 0B..1KB;

Protocols and protocol properties (see module 6 for details)

• Provided_Virtual_Bus_Class => …;

• Provided_Connection_Quality_of_Service =>

What can be trans-
mitted over this bus

bus

Supported protocols

© 2010 Carnegie Mellon University 62

• Provided_Connection_Quality_of_Service =>
(OrderedDelivery);

Hardware Component

Constraints on physical connectivity

• Allowed_Physical_Access => (processor, memory);

Properties related to data transmission time

• Transmission_Time

• Latency

What may be
connected to this bus

Supported protocols
and QoS

An Overview of AADL V2

Shared Bus Access

A bus component can be shared among components in different
subsystems

• Bus access features – to model required or provided access to shared bus

• Bus access connections – to model the path to the shared bus

Access connection
Provided bus access Required bus access

© 2010 Carnegie Mellon University 63

Note: The bus access symbol points away from the shared component. It does not indicate
the direction of data flow.

Semantic access
connection

Ultimate Source

USB CPU

Ultimate destination

An Overview of AADL V2

Memory Components
Memory

AADL memory components represent randomly accessible physical
storage (e.g. RAM, ROM)

AADL memory may also be used to model complex permanent storage
(e.g. disks, database)

Stores binary images of source text (i.e., code and data)and run-time
data

© 2010 Carnegie Mellon University 64

Processes must be in memory at startup to be executed

• Stored permanently in ROM

• Loaded into RAM

Processors need access to memory

• Processor and memory are connected via a shared bus

• Memory is contained in the processor

An Overview of AADL V2

Device Components

AADL device components represent elements that are not decomposed
further in a model

Devices are characterized by their interface, their internal structure is not
modeled

• Typically physical components interfacing with the environment

• Sensors and actuators

• Standalone complex devices, e.g., GPS device, camera

Device

© 2010 Carnegie Mellon University 65

• Interact with application components, e.g., via port connections

• Camera sends video frames to an application thread for processing at a
rate of 25 frames per second

• Often 3rd party components that include

• The device hardware

• A device driver

An Overview of AADL V2

Some Device Properties

Execution of the device driver

• Dispatch_Protocol => perodic;

• Period => 50ms;

• Deadline => 50ms;

• Compute_Execution_Time => 15ms;

• Priority => 5;

• Time_Slot => (1);

device

© 2010 Carnegie Mellon University 66

• Time_Slot => (1);

Memory and processor binding for execution

• Allowed/Actual_Memory_Binding

• Allowed/Actual_Processor_Binding

An Overview of AADL V2

Bringing Application Software and Execution
Platform Together
Application software relies on computational resources for execution of
threads, and communication among threads and between threads and
devices

In a model, application software and execution platform often form
independent system hierarchies

AADL provides binding properties to describe how application software

© 2010 Carnegie Mellon University 67

AADL provides binding properties to describe how application software
components are allocated to the execution platform

An Overview of AADL V2

Binding Properties

Application software

• Component – process, thread, data, device, subprogram

• Ports – data port, event data port

• Connections – port connection, data/subprogram access connection, …

Execution platform

• Components – processor, memory, device

• Communication – bus, bus access connections

© 2010 Carnegie Mellon University 68

• Communication – bus, bus access connections

Map application software elements to execution platform elements using
binding properties

• Actual_Processor_Binding – Specify which processor schedules and
executes a thread or executes a (kernel mode) device driver

• Actual_Memory_Binding – Specify the memory components in which
executable code (process components) and data (data component) reside

• Actual_Connection_Binding – Specify the communication channels that are
used by logical connections

An Overview of AADL V2

Handling of Processor Speed

Execution time expressed in absolute time

Modeling of processor-specific execution times

• Use of binding-specific property values

Compute_Execution_Time => 700us..750us

in binding PowerPC.Mhz350;

Compute_Execution_Time => 600us..630us

in binding PowerPC.Mhz450;

Estimated or measured
time for each processor

© 2010 Carnegie Mellon University 69

in binding PowerPC.Mhz450;

• Execution time in terms of reference processor

Reference_Processor

Scaling_Factor

Other processors indicate
their speed relative to the
reference processor

Execution times are
specified for this processor

Execution time scaled to
processor speed differential

An Overview of AADL V2

Virtual Processor

Logical resource similar to a processor without the hardware aspect

• Schedules and executes threads and other virtual processors

• May communicate with other components via ports

• May provide services

• Must be bound to a processor for execution and are scheduled like threads

Threads can be bound to a virtual processor for execution

A virtual processor can be bound to another virtual processor for

Virtual
Processor

© 2010 Carnegie Mellon University 70

A virtual processor can be bound to another virtual processor for
execution

A hierarchy of virtual processors represents a hierarchy of virtual
machines, each with its own scheduling policy (hierarchical scheduling)

Two ways to associate a virtual processor with a physical processor

• Bind a virtual processor to a (virtual) processor
� Flexible binding via property associations, just like thread bindings

• Declare a virtual processor as a subcomponent of a (virtual) processor
� Fixed binding via component containment

An Overview of AADL V2

Hierarchical Scheduling

A sporadic server is scheduled as a fixed priority thread on a processor

virtual processor implementation SporadicServer.impl
properties
Allowed_Dispatch_Protocol => (sporadic);
Scheduling_Protocol => (FIFO);
Period => 50ms;
Execution_Time => 10ms;
Dispatch_Protocol => periodic;

end SporadicServer.impl;

Sporadic
Server

Virtual
Processor

© 2010 Carnegie Mellon University 71

end SporadicServer.impl;

processor implementation RMProcessor.impl
properties
Allowed_Dispatch_Protocol => (periodic);
Scheduling_Protocol => (RMS);

end RMProcessor.impl;

system implementation SS.impl
subcomponents
sserver: virtual processor SporadicServer.impl;
rmserver: processor RMProcessor;

properties
Actual_Processor_Binding => reference(rmserver) applies to sserver;

end SS.impl;

RMProcessor

An Overview of AADL V2

Modeling Partitioned Architectures

A partitioned architecture provides spatial and temporal partitioning of a
physical execution platform

A partition is a virtual machine where each partition has exclusive access

• To a memory region

• To all other compute resources whenever it executes

All communication between partitions must be mediated by the
partitioning operating system

Virtual
Processor

© 2010 Carnegie Mellon University 72

partitioning operating system

Partitioning forms a basis for sharing hardware resources between
processes

• Mixed criticality – to guarantee limited fault propagation

• Mixed security levels – to allow the operating system to enforce a system wide
security policy

In the avionics domain, ARINC 653 specifies a partitioned execution
environment

An Overview of AADL V2

Modeling ARINC 653 Partitions
Containment Approach
Partitions are assigned fixed time slots in the schedule

virtual processor implementation RMA.impl
properties
Allowed_Dispatch_Protocol => (periodic);
Scheduling_Protocol => (RMS);
Dispatch_Protocol => none;

end Partition.impl;

processor implementation PPC.two
subcomponents

Main.impl

partition1 :
Partition.impl

partition2 :
Partition.impl

Virtual
Processor

© 2010 Carnegie Mellon University 73

subcomponents
part1: virtual processor RMA.impl;
part2: virtual processor RMA.impl;

properties
Allowed_Dispatch_Protocol => (none);
Scheduling_Protocol => (FixedTimeline);
Frame_Period => 90ms;
Slot_Time => 30ms;
Time_Slot => (1) applies to part1;
Time_Slot => (2,3) applies to part2;

end PPC.two;

Partition.impl

Fixed binding

Scheduling slots

Slot assignment
to partitions

An Overview of AADL V2

Modeling ARINC 653 Partitions
Binding Approach
We choose a layered approach, where layers are connected by bindings

system implementation AppSystem.impl
subcomponents
app1: process AppPartition.one;
app2: process AppPartition.two;

end AppSystem.impl;

Application
Processes

Virtual

Virtual
Processor

© 2010 Carnegie Mellon University 74

system implementation VirtualPlatform.impl
subcomponents
part1: virtual processor RMA.impl;
part2: virtual processor RMA.impl;

end VirtualPlatform.impl;

Virtual
Processors

Processor

An Overview of AADL V2

Virtual Bus

Logical component representing a protocol or virtual channel, similar to a
bus without the hardware aspect

Connections can be bound to a virtual bus

A virtual bus can represent an communication channel on a shared bus

• Portion of the bus bandwidth

• Performance guarantees per channel

Virtual Bus

© 2010 Carnegie Mellon University 75

• Performance guarantees per channel

Virtual buses are bound to bus, virtual bus, processor, and device
components – like connections

A hierarchy of virtual buses can represent a protocol hierarchy

• E.g., HTTP � TCP/IP � Ethernet

• The lowest level of the hierarchy is a bus component

An Overview of AADL V2

Modeling Communication Channels

Buses can be subdivided into a set of virtual channels, each with its own
bandwidth guarantees

virtual bus VOIP
end VOIP;

bus implementation Ethernet.twoVOIP
subcomponents
channel1: virtual bus VOIP {Bandwidth => 300 MBpSec;};
channel2: virtual bus VOIP {Bandwidth => 250 MBpSec;};

properties

Bandwidth provided
by the virtual channels

© 2010 Carnegie Mellon University 76

properties
Multiplexing_Protocol => TDMA;
Bandwidth => 1 GBpSec;

end Ethernet.two;

Similarly, a virtual bus can be subdivided into sub-channels

Each (virtual) bus supports its own multiplexing protocol, e.g., cellular
networks use

• time division multiplexing (TDMA), or

• code division multiplexing (CDMA)

How the channels are
managed

An Overview of AADL V2

Modeling Communication Protocols

There are three approaches to indicate that a component provides a
protocol

1. Add a virtual bus subcomponent

2. Bind a virtual bus to the component

3. List a virtual bus classifier in the component’s
Provided_Virtual_Bus_Class property

© 2010 Carnegie Mellon University 77

Example: A bus that provides both HTTP and HTTPS protocols

bus implementation Ethernet.Web
subcomponents
protocol_HTTP: virtual bus HTTP;

properties
Provided_Virtual_Bus_Class => HTTPS;
Bandwidth => 1 GBpSec;

end Ethernet.Web;

Protocol via subcomponent
Allows multiple channels
with the same protocol

Protocol via property

An Overview of AADL V2

Outline: AADL Standard & MBE

• Why AADL

• AADL Language Overview

• Modeling Embedded Software

• Modeling Computer Systems

• Properties & Patterns

© 2010 Carnegie Mellon University 78

• Large Scale Systems

• Summary

An Overview of AADL V2

Property Sets

Allow definition of properties, property types, and property constants

Logical grouping of properties, e.g., all related to resource budgeting

Property types

• Define a set of allowed values for a property

Property constants

• Define a named property value

Properties

© 2010 Carnegie Mellon University 79

Properties

• Are defined in a property set

• Have a type and optionally a default value

• Can have either a single value or a list of values

• Are applicable to certain named AADL model elements

property set myProps is
import declarations
types, constants, properties

end myProps;

An Overview of AADL V2

Property Types 1

Boolean – aadlboolean

String – aadlstring

Enumerations – enumeration (literal1, literal2, …)

Units – units (unit1, unit2 => unit * factor, …)

aadlinteger [lower_bound .. upper_bound] [units units]

aadlreal [lower_bound .. upper_bound] [units units]

© 2010 Carnegie Mellon University 80

range of number_type

classifier [(category1, category2, …)]

reference [(named_element_kind1, …)]

record (field_name1: [list of] property_type1; …)

An Overview of AADL V2

Pre-declared Property Sets

The AADL standard includes 7 pre-declared property sets which are
available in every AADL specification

1. Deployment_Properties – Binding constraints and actual bindings of
application software to execution platform components

2. Thread_Properties – Characteristics of active components (threads and
devices): dispatching, concurrency, mode transition

3. Timing_Properties – Time related characteristics of active components;
runtime system support for thread execution

© 2010 Carnegie Mellon University 81

runtime system support for thread execution

4. Communication_Properties – Properties to specify connection topology and
queuing characteristics

5. Memory_Properties – Properties related to memory as storage, and memory
and device access

6. Programming_Properties – Properties to specify relationship between AADL
model elements and elements of an implementation in a programming
language or hardware description language

7. Modeling_Properties – Properties that relate to the model itself

An Overview of AADL V2

Abstract Components

Abstract components represent components without a specific category

Abstract types can have any kind of features

Abstract implementations can have any kind of subcomponents

Any component implementation can have abstract subcomponents

Abstract

© 2010 Carnegie Mellon University 82

Abstract components can be specialized into a concrete component
category

• Extension of abstract classifiers

• Refinement of abstract subcomponents

Note: The features and subcomponents of an abstract component
restrict the valid concrete categories that can be assigned

An Overview of AADL V2

Extensions and Refinements

Define a new extended classifier based on an existing classifier

Allows incremental refinement of a model

Component extension

• Component types

• Component implementations

Feature group type extension

© 2010 Carnegie Mellon University 83

Feature group type extension

Applications

• Add elements to a classifier

• Features, subcomponents, connections, flows, etc.

• Refine existing elements in a component

• Add or override properties

An Overview of AADL V2

Refinement Substitution Rules

Classifier_Match

1. Goto type

2. Select an implementation

Type_Extension

1. Goto type

2. Select an extension

A

B

A.i1 A.i2

B.i

© 2010 Carnegie Mellon University 84

2. Select an extension

3. Select an implementation (optional)

Signature_Match

1. Goto type

2. Select a type with a superset of
features and flow specifications

3. Select an implementation (optional)

C

C.i

D

D.i

An Overview of AADL V2

Prototypes – Consistent Refinement

Example: Type of data on a port

systemsystem GpsGeneric

prototypes

dt: data;

features

pos_1: out data dt;

pos_2: out data dt;

system Gps

extends GpsGeneric(dt=>PosData)

end Gps;

© 2010 Carnegie Mellon University 85

Compare to refinementend

pos_2: out data dt;

end GpsGeneric;

system

end

system GpsBasic

features

pos_1: out data;

pos_2: out data;

end GpsBasic;

system GpsRef extends GpsBasic

features

pos_1: refined to out data PosData;

pos_2: refined to out data OtherData;

end GpsRef;

No enforcement of
consistency possible

An Overview of AADL V2

Abstract Features

Placeholders for concrete features (port, access, parameter, feature
group)

May specify the direction of data or control flow

In a complete model all abstract features are replaced with concrete ones

• By refinement into the concrete feature

• By providing the concrete feature in a prototype binding

© 2010 Carnegie Mellon University 86

Refinement

thread

end

thread filter

features

raw: in feature;

filtered: feature;

end filter;

thread filter1 extends filter

features

raw: refined to in event data port;

filtered: refined to out data port;

end filter1;

An Overview of AADL V2

Subcomponent Arrays

Indicate a multiplicity at a subcomponent declaration within a component
implementation

• Multidimensional arrays allowed, dimension is fixed

• Array size can be specified in subcomponent refinement (but not changed)

• Sizes for all dimensions must be specified in one place

process implementation N_Version.generic

© 2010 Carnegie Mellon University 87

process implementation N_Version.generic
subcomponents
myCompute: thread Compute [];
myVoter: thread Voter;

end N_Version.generic;

process implementation N_Version.triple
extends N_Version.generic
subcomponents
myCompute: refined to thread Compute [3];

end N_Version.triple;

Single dimension,
size still undefined

myCompute[1],
myCompute[2],
myCompute[3]

An Overview of AADL V2

Feature Arrays

Indicate a multiplicity at a feature declaration within a component type

• Only one-dimensional feature arrays allowed

• Array size can be specified in a feature refinement (but not changed)

• Limited to features of threads, devices, and processors

AADL Syntax:

thread Voter input[1],

© 2010 Carnegie Mellon University 88

thread Voter
features
input: in data port [3];
output: out data port;

end Voter;

A property Acceptable_Array_Size can be associated with a feature or
subcomponent to constrain the size of an array.

Acceptable_Array_Size => 2..5;

input[1],
input[2],
input[3]

An Overview of AADL V2

Connecting Arrays

Determine semantic connections in the presence of component and
feature arrays <<FIXME:

NVersion.triple

myCompute:
Compute [3]

myVoter: Voter

dat input [3]
c1

© 2010 Carnegie Mellon University 89

Connection between two arrays:

c1: port myCompute.dat -> myVoter.input {
Connection_Pattern => ((one_to_one));

};

myCompute[N].dat -> myVoter.input[N], N = 1,2,3

In general, (1) determine the semantic connections without arrays and (2) apply
the connection pattern to them.

A list of lists

An Overview of AADL V2

Connection patterns – one dimension

S D

Identity aka.
One_To_One

S D

next Cyclic_Next

S D

previous

S D

© 2010 Carnegie Mellon University 90

Neighbor =
(next, previous)

S D

Cyclic Neighbor =
(CyclicNext, CyclicPrevious)

S D

next, one_to_one

S D

An Overview of AADL V2

Connection patterns – two dimensions
S D

S D

© 2010 Carnegie Mellon University 91

(Identity , identity)
(Identity , next)

S D

(next , next)

S[3,3]; D[3,3];

Port S.p1 -> D.p2;

An Overview of AADL V2

Connection Sets

Property Connection_Set can be used if patterns are insufficient to
express desired connectivity

Each connection is specified individually in the set

Connection_Set => (
(src => (1,1), dst => (1,2)),
(src => (1,1), dst => (2,2)),
(src => (1,2), dst => (1,3)),

1,1 2,1 3,1

© 2010 Carnegie Mellon University 92

(src => (1,2), dst => (1,3)),
(src => (1,3), dst => (2,2)),

(src => (2,1), dst => (2,2)),
(src => (2,2), dst => (2,3)),

(src => (3,1), dst => (2,2)),
(src => (3,1), dst => (3,2)),
(src => (3,2), dst => (3,3)),
(src => (3,3), dst => (2,2))
);

1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

An Overview of AADL V2

Outline: AADL Standard & MBE

• Why AADL

• AADL Language Overview

• Modeling Embedded Software

• Modeling Computer Systems

• Properties & Patterns

© 2010 Carnegie Mellon University 93

• Large Scale Systems

• Summary

An Overview of AADL V2

Package Example

package Aircraft::Cockpit
public
with Avionics::DataTypes;

AirDataType renames Avionics::DataTypes::AirData;

system MFD
features

air_data: in data port AirDataType;

Package

© 2010 Carnegie Mellon University 94

air_data: in data port AirDataType;
end MFD;

private
system implementation MFD.impl

subcomponents
local_data: data AirDataType;

end MFD.impl;
end Aircraft::Cockpit;

Imports, aliases, and classifiers
from the public part are visible
in the private section

Private imports, aliases, and
classifiers are local to the
private section

An Overview of AADL V2

Use of AADL Packages

AADL Packages as name spaces

• Nested package names: edu::cmu::sei::MySystem::App1

• Qualify references by package name: BaseTypes::uint16

Component libraries

• Component types and implementations

• Hardware & application SW & SW task libraries

• Subsystem details in separate packages

© 2010 Carnegie Mellon University 95

• Subsystem details in separate packages

Data dictionary

• Data types

• Domain information on data types

Interaction specifications

• Port group type specifications

System configurations

• Deployment

• Parameterization

An Overview of AADL V2

Variants in System Families or Product Lines

Multiple interface variants
• AADL component types with extends

Multiple realizations
• Multiple AADL component implementations per type

Variation in component structure and communication
• Parameterized component implementations (AADL V2 Prototype concept)

© 2010 Carnegie Mellon University 96

• Dynamic variation through mode-specific subcomponents and connections

Source code variations
• Different source files as Source_Text property

• Conditional compilation flags as properties or property constants

Seed & calibration values
• As property values on data components

An Overview of AADL V2

Refinement of Partial Architectures

Extending the component types & implementations

© 2010 Carnegie Mellon University 97

An Overview of AADL V2

Modeling of System Configurations

© 2010 Carnegie Mellon University 98

Use of contained property association to
keep deployment information in one place

Use of extends to specify configurations

An Overview of AADL V2

Managing an Architecture Model

• Reference architecture and instances (NASA/JPL)

• Integrator and suppliers (SAVI)

Instantiation of Application Architecture

Computing Platform, and Physical System

© 2010 Carnegie Mellon University 99

Generic Architecture Pattern

With Connection Topology

An Overview of AADL V2

Aircraft system: (Tier 1)
Engine, Landing Gear, Cockpit, …
Weight, Electrical, Fuel, Hydraulics,…

LRU/IMA System: (Tier 2)
Hardware platform, software partitions
Power, MIPS, RAM capacity & budgets
End-to-end flow latency

Subcontracted software subsystem: (Tier 3)
Tasks, periods, execution time
Software allocation, schedulability

OEM & Subcontractor:
Subsystem interaction validation
Functional integration consistency

Early & Continuous Validation of Multi-tier System & SW
Architecture through Virtual Integration (AVSI SAVI)

Aircraft: (Tier 0)

© 2010 Carnegie Mellon University 100

Software allocation, schedulability
Generated executables

Functional integration consistency
ARINC 429 protocol consistency

Additional Opportunities:
Safety & security analysis
Fault modeling & impact analysis
What-if trade studies

Validation through Analysis Demonstration
• Propagate requirements and constraints
• Higher level model down to suppliers' lower level models
• Verification of lower level models satisfies higher level requirements and constraints

SEI created ROI of validation impact on rework reduction

Redundancy Logic Validation:
Dual Flight Guidance System
Nominal, distributed, logical fault,
physical fault, asynchronous system

An Overview of AADL V2

Outline: AADL Standard & MBE

• Why AADL

• AADL Language Overview

• Modeling Embedded Software

• Modeling Computer Systems

• Properties & Patterns

© 2010 Carnegie Mellon University 101

• Large Scale Systems

• Summary

An Overview of AADL V2

Conclusion

AADL has been used in a number of large-scale industrial pilot projects

• Most recently: AVSI System Architecture Virtual Integration with Boeing,
Lockheed Martin, Airbus, Suppliers, FAA, DoD, SEI (year 2 of 5)

• Commercial AADL support through ElliDiss & MARTE subset as UML profile
for AADL

AADL has become a research platform of choice for fast-tracking
transition

© 2010 Carnegie Mellon University 102

• Over 200 published papers in refereed conferences and journals

• Wide range of analysis and code generation plug-ins and tools

AADL and other standards

• Ongoing harmonization with SysML and MARTE

An Overview of AADL V2

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely

© 2010 Carnegie Mellon University 104

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

